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Machine learning is fundamentally about: generalization. Task:
choose

1. A hypothesis set (approximation error)

2. A specific function in that set (estimation error)

R(h)− R∗ =

(
R(h)− inf

h∈H
R(h)

)
+

(
inf
h∈H

R(h)− R∗
)

(1)

I How does one minimize the first one?

I How does one minimize the second one?

Main Question: Is the error ever small?



Beamer

Mathematical Formalism
Definitions:

I X set of examples or instances

I Y labels or target values Y = {0, 1}
I Concept class C what you desire to learn

I Hypothesis set H

Assume examples are i.i.d. with law D.

Learning Problem: Learner considers a fixed set H, which
may or may not coincide with C. Receives sample S =
(x1, . . . , xm), which is drawn i.i.d. according to D as well
labels (c(x1), . . . , c(xm)), where c ∈ C. Task is to use S
to learn hS ∈ H, that has a small generalization error with
respect to c
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Generalization Error

Given h ∈ H, a target concept c ∈ C, an underlying distribution D,
the generalization error of h is defined by:

R(h) = Px∼D[h(x) 6= c(x)] = Ex∼D[1h(x)6=c(x)] (2)

But, D and c are unknown. One can measure the empirical error:

R̂S(h) =
1

m

m∑
i=1

1h(xi )6=c(xi ) (3)

There are a number of guarantees that relate these two quantities
with high probability.
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PAC Learning

A concept class C is said to be PAC-learnable if there exists an
algorithm A and a polynomial function poly(·, ·, ·, ·) such that for
any ε > 0 and δ > 0, for all distributions D on X and for any
target concept c ∈ C, the following holds for any sample size
m ≥ poly(1/ε, 1/δ, n, size(c)):

PS∼Dm [R(hS) ≤ ε] ≥ 1− δ (4)

Note that training and test samples are drawn from the same
distribution. This learnability is related to C, which is known, but
c ∈ C which is unknown.
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Hypothesis complexity

If we have an algorithm that returns a consistent hypothesis, i.e.
R̂S(hS) = 0 for any concept c ∈ H, then if the hypothesis set H
has finite cardinality, the concept class is PAC-learnable provided
that the sample size satisfies:

m ≥ 1

ε

(
log |H|+ log

1

δ

)
(5)

Q: What if the cardinality of the hypothesis set is infinite?
A: We have to examine some exotic concepts...



Beamer

Radamacher Complexity & VC Dimension

Rademacher complexity: ability of family of functions to
correlate with noise. This concept seems related somehow to
amount of information.

VC-Dimension: Largest size of set that can be shattered.
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Bounds

Using these concepts, we can derive nice asymptotic bounds using
concentration inequalities like Hoeffding. Let H have
VC-dimension d . Then, for any δ > 0, with probability at least
1− δ, the following holds for all h ∈ H:

R(h) ≤ R̂S(h) +O

(√
log(m/d)

(m/d)

)
(6)

I Too many samples with a simple hypothesis set? Not very
generalizable.

I Not many samples and a complex hypothesis set? Not very
generalizable.
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Generalizations

In reality, the distribution D is over X × Y, meaning that even the
labeling is unreliable to some extent. For example, input height,
output gender. Then, we instead define:

R(h) = P(x ,y)∈D[h(x) 6= y ] (7)

PAC learning:

PS∼Dm [R(hS)− min
h∈H

R(h) ≤ ε] ≥ 1− δ (8)

Note, the deterministic case guarantees ∃h s.t. R(h) = 0
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Bayes Hypothesis

I We define the infimum over all measurable functions hBayes.
This is called the Bayes hypothesis.

I The error of the Bayes hypothesis at a point x ∈ X is called
the noise. This is pretty unavoidable.

For example, perhaps given an age x = 40 years old, can we
predict if it’s a man or a woman? No, too noisy. Given the
age x = 110, can we? Most likely a woman.
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Reducing the Empirical Error

R(h)− R∗ =

(
R(h)− inf

h∈H
R(h)

)
+

(
inf
h∈H

R(h)− R∗
)

(9)

I What if we pick a very rich hypothesis set H? Then, second
term, the approximation error, is small, but the first term, the
estimation error, is large for a fixed h.

I If we pick a simple H? Then, the first term is easy to make
small, but the second term is usually not small.
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Estimation Error & Approximation Error

I Since R(h) can be bounded by the empirical error R̂(h),
bounding the first term, the estimation error is akin to
reducing the empirical error (empirical risk management).
Theoretically can be bounded well by having a large sample
and a small complexity (Rademacher or VC-dimension). In
practice, the bound is usually poor.

I Another way is to pick a hypothesis that balances the
estimation and approximation errors (structural risk
management).

I In practice? Use cross-validation, setting aside part of the
training sample as a validation set. This gives nice bounds.
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Questions?
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Highlighted Resources

I “Foundations of Machine Learning” Mohri, Mehryar;
Rostamizadeh, Afshin; Talwalkar, Ameet
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Future Talks

Next Talk:

Dec. 11: Yuexin Liu
Reinforcement Learning


